DocumentCode :
3244951
Title :
Frequency-domain linear prediction for temporal features
Author :
Athineos, Marios ; Ellis, Daniel P W
Author_Institution :
Dept. of Electr. Eng., Columbia Univ., New York, NY, USA
fYear :
2003
fDate :
30 Nov.-3 Dec. 2003
Firstpage :
261
Lastpage :
266
Abstract :
Current speech recognition systems uniformly employ short-time spectral analysis, usually over windows of 10-30 ms, as the basis for their acoustic representations. Any detail below this timescale is lost, and even temporal structures above this level are usually only weakly represented in the form of deltas etc. We address this limitation by proposing a novel representation of the temporal envelope in different frequency bands by exploring the dual of conventional linear prediction (LPC) when applied in the transform domain. With this technique of frequency-domain linear prediction (FDLP), the ´poles´ of the model describe temporal, rather than spectral, peaks. By using analysis windows on the order of hundreds of milliseconds, the procedure automatically decides how to distribute poles to model the temporal structure best within the window. While this approach offers many possibilities for novel speech features, we experiment with one particular form, an index describing the ´sharpness´ of individual poles within a window, and show a relatively large word error rate improvement from 4.97% to 3.81% in a recognizer trained on general conversational telephone speech and tested on a small-vocabulary spontaneous numbers task. We analyze this improvement in terms of the confusion matrices and suggest how the newly-modeled fine temporal structure may be helping.
Keywords :
duality (mathematics); error statistics; frequency-domain analysis; matrix algebra; poles and zeros; signal representation; spectral analysis; speech recognition; 10 to 30 ms; acoustic representations; confusion matrices; conversational telephone speech; frequency-domain linear prediction; poles; short-time spectral analysis; small-vocabulary spontaneous numbers task; spectral peaks; speech recognition; temporal envelope; temporal features; temporal peaks; word error rate; Acoustic testing; Automatic speech recognition; Discrete cosine transforms; Error analysis; Frequency domain analysis; Linear predictive coding; Predictive models; Spectral analysis; Speech recognition; Telephony;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Automatic Speech Recognition and Understanding, 2003. ASRU '03. 2003 IEEE Workshop on
Print_ISBN :
0-7803-7980-2
Type :
conf
DOI :
10.1109/ASRU.2003.1318451
Filename :
1318451
Link To Document :
بازگشت