DocumentCode :
324502
Title :
Gradient-based blind deconvolutions with flexible approximated Bayesian estimator
Author :
Fiori, Simone ; Uncini, Aurelio ; Piazza, Francesco
Author_Institution :
Dipt. di Elettronica e Autom., Ancona Univ., Italy
Volume :
2
fYear :
1998
fDate :
4-9 May 1998
Firstpage :
854
Abstract :
In this paper a new blind deconvolution algorithm as modification of the Bellini´s (1986) “Bussgang” is presented. First, a novel version based on stochastic gradient steepest descent error minimization technique is proposed. Then the Bayesian estimator used by Bellini is approximated with a flexible “sigmoid” parametrized with adjustable amplitude and slope, and a gradient-based technique is proposed to adapt such parameters in order to avoid their unsuitable choices. Experimental results are shown to assess the usefulness of the new equalization method
Keywords :
Bayes methods; adaptive signal detection; deconvolution; error analysis; minimisation; parameter estimation; Bayesian estimator; Bellini theory; blind deconvolution; blind source separation; equalization; error minimization; gradient steepest descent method; learning; parameter estimation; self tuning; Bayesian methods; Deconvolution; Distortion; Ear; Equalizers; Finite impulse response filter; Statistics; Stochastic processes; Transversal filters; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks Proceedings, 1998. IEEE World Congress on Computational Intelligence. The 1998 IEEE International Joint Conference on
Conference_Location :
Anchorage, AK
ISSN :
1098-7576
Print_ISBN :
0-7803-4859-1
Type :
conf
DOI :
10.1109/IJCNN.1998.685879
Filename :
685879
Link To Document :
بازگشت