DocumentCode :
3245112
Title :
Maximum entropy discrimination (MED) feature subset selection for speech recognition
Author :
Valente, Fabio ; Wellekens, Christian
Author_Institution :
Inst. Eurecorn, Sophia Antipolis, France
fYear :
2003
fDate :
30 Nov.-3 Dec. 2003
Firstpage :
327
Lastpage :
332
Abstract :
In this paper, we investigate the application of maximum entropy discrimination (MED) feature selection in speech recognition problems. We compare the MED algorithm with a classical wrapper feature selection algorithm and we propose a hybrid wrapper/MED algorithm. We experiment with the three approaches on a phoneme recognition task on the TIMIT database. Results show that the MED algorithm achieves error rates comparable with the wrapper algorithm, requiring a reduced computational charge. Furthermore, the use of a probabilistic framework shows that the MED algorithm gives very good results even with a very limited amount of data.
Keywords :
Bayes methods; maximum entropy methods; signal classification; speech recognition; Bayesian framework; MED feature subset selection; classification; hybrid wrapper/MED algorithm; maximum entropy discrimination; phoneme recognition; recognition error rates; speech recognition; wrapper feature selection algorithm; Acoustic applications; Bayesian methods; Decoding; Entropy; Filters; Linear discriminant analysis; Linear predictive coding; Mel frequency cepstral coefficient; Spatial databases; Speech recognition;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Automatic Speech Recognition and Understanding, 2003. ASRU '03. 2003 IEEE Workshop on
Print_ISBN :
0-7803-7980-2
Type :
conf
DOI :
10.1109/ASRU.2003.1318462
Filename :
1318462
Link To Document :
بازگشت