DocumentCode :
3247098
Title :
Exploring scalar fields using critical isovalues
Author :
Weber, Gunther H. ; Scheuermann, Gerik ; Hagen, Hans ; Hamann, Bernd
Author_Institution :
AG Graphische Datenverarbeitung und Computergeometrie, Kaiserslautern Univ., Germany
fYear :
2002
fDate :
1-1 Nov. 2002
Firstpage :
171
Lastpage :
178
Abstract :
Isosurfaces are commonly used to visualize scalar fields. Critical isovalues indicate isosurface topology changes: the creation of new surface components, merging of surface components or the formation of holes in a surface component. Therefore, they highlight interesting isosurface behavior and are helpful in exploration of large trivariate data sets. We present a method that detects critical isovalues in a scalar field defined by piecewise trilinear interpolation over a rectilinear grid and describe how to use them when examining volume data. We further review varieties of the marching cubes (MC) algorithm, with the intention of preserving topology of the trilinear interpolant when extracting an isosurface. We combine and extend two approaches in such a way that it is possible to extract meaningful isosurfaces even when a critical value is chosen as the isovalue.
Keywords :
data visualisation; interpolation; piecewise linear techniques; critical isovalues; hole formation; isosurface topology changes; large trivariate data set exploration; marching cubes algorithm; piecewise trilinear interpolation; rectilinear grid; scalar field visualization; surface component merging; topology preservation; trilinear interpolant; volume data; Computer graphics; Computer science; Data mining; Data visualization; Image processing; Interpolation; Isosurfaces; Merging; Table lookup; Topology;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Visualization, 2002. VIS 2002. IEEE
Conference_Location :
Boston, MA, USA
Print_ISBN :
0-7803-7498-3
Type :
conf
DOI :
10.1109/VISUAL.2002.1183772
Filename :
1183772
Link To Document :
بازگشت