DocumentCode :
3248538
Title :
Quality analysis of source code comments
Author :
Steidl, Daniela ; Hummel, Benjamin ; Juergens, Elmar
Author_Institution :
CQSE GmbH, Garching, Germany
fYear :
2013
fDate :
20-21 May 2013
Firstpage :
83
Lastpage :
92
Abstract :
A significant amount of source code in software systems consists of comments, i. e., parts of the code which are ignored by the compiler. Comments in code represent a main source for system documentation and are hence key for source code understanding with respect to development and maintenance. Although many software developers consider comments to be crucial for program understanding, existing approaches for software quality analysis ignore system commenting or make only quantitative claims. Hence, current quality analyzes do not take a significant part of the software into account. In this work, we present a first detailed approach for quality analysis and assessment of code comments. The approach provides a model for comment quality which is based on different comment categories. To categorize comments, we use machine learning on Java and C/C++ programs. The model comprises different quality aspects: by providing metrics tailored to suit specific categories, we show how quality aspects of the model can be assessed. The validity of the metrics is evaluated with a survey among 16 experienced software developers, a case study demonstrates the relevance of the metrics in practice.
Keywords :
C++ language; Java; learning (artificial intelligence); program compilers; program diagnostics; reverse engineering; software metrics; software quality; system documentation; C/C++ programs; Java programs; code comment assessment; comment categories; machine learning; program understanding; software metrics; software quality analysis; software systems; source code comment quality analysis; system documentation; Coherence; Computer bugs; Documentation; Java; Measurement; Software; Training data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Program Comprehension (ICPC), 2013 IEEE 21st International Conference on
Conference_Location :
San Francisco, CA
ISSN :
1063-6897
Type :
conf
DOI :
10.1109/ICPC.2013.6613836
Filename :
6613836
Link To Document :
بازگشت