DocumentCode :
325234
Title :
Fuzzy regression: an evolutionary algorithm approach
Author :
Feuring, Thomas ; Buckley, James J. ; Hayashi, Yoichi
Author_Institution :
Munster Univ., Germany
Volume :
1
fYear :
1998
fDate :
4-9 May 1998
Firstpage :
704
Abstract :
Given some data (X¯i, Z¯i), 1<i⩽p, where X¯i and Z¯i are fuzzy numbers, our evolutionary algorithm package finds the best fuzzy function (from linear, polynomial of degree ⩽Δ, exponential, logarithmic) that fits the data. Several tests of our fuzzy regression package are given
Keywords :
fuzzy set theory; genetic algorithms; mathematics computing; number theory; polynomials; statistical analysis; evolutionary algorithm; fuzzy function; fuzzy numbers; fuzzy regression; fuzzy set theory; polynomials; Arithmetic; Evolutionary computation; Fuzzy neural networks; Linear regression; Neural networks; Packaging; Polynomials; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Systems Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on
Conference_Location :
Anchorage, AK
ISSN :
1098-7584
Print_ISBN :
0-7803-4863-X
Type :
conf
DOI :
10.1109/FUZZY.1998.687574
Filename :
687574
Link To Document :
بازگشت