DocumentCode :
3252655
Title :
A novel clustering method for fuzzy model identification
Author :
Tushir, Meena ; Srivastava, Smriti
Author_Institution :
Deptt. of Electr. & Electron. Eng., MSIT, New Delhi, India
fYear :
2009
fDate :
23-26 Jan. 2009
Firstpage :
1
Lastpage :
5
Abstract :
Takagi-Sugeno models are an important class of fuzzy rule based oriented models, generally used for prediction and control. Fuzzy clustering is one of effective methods for identification. In this method, we propose to use a fuzzy clustering method (Kernel based fuzzy c-means method) for automatically constructing a multi-input fuzzy model to identify the structure of a fuzzy model. To clarify the advantages of the proposed method, it also shows some examples of modeling, among them a model of a human operator´s control action and a qualitative model to explain the trends in the time series data of the price of a stock.
Keywords :
fuzzy control; identification; pattern clustering; statistical analysis; Takagi-Sugeno models; fuzzy clustering; fuzzy model identification; kernel based fuzzy c-means method; stock pricing; time series; Automatic control; Clustering algorithms; Clustering methods; Fuzzy control; Fuzzy systems; Kernel; Parameter estimation; Predictive models; System identification; Takagi-Sugeno model; TS Models; kernel function; system identification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
TENCON 2009 - 2009 IEEE Region 10 Conference
Conference_Location :
Singapore
Print_ISBN :
978-1-4244-4546-2
Electronic_ISBN :
978-1-4244-4547-9
Type :
conf
DOI :
10.1109/TENCON.2009.5395882
Filename :
5395882
Link To Document :
بازگشت