DocumentCode :
3252803
Title :
Speeding up Viola-Jones algorithm using multi-Core GPU implementation
Author :
Masek, Jaroslav ; Burget, Radim ; Uher, Vaclav ; Guney, Selda
Author_Institution :
Dept. of Telecommun., Brno Univ. of Technol., Brno, Czech Republic
fYear :
2013
fDate :
2-4 July 2013
Firstpage :
808
Lastpage :
812
Abstract :
Graphic Processing Units (GPUs) offer cheap and high-performance computation capabilities by offloading compute-intensive portions of the application to the GPU, while the remainder of the code still runs on a CPU. This paper introduces an multi-GPU CUDA implementation of training of object detection using Viola-Jones algorithm that has accelerated of two the most time consuming operations in training process by using two dual-core NVIDIA GeForce GTX 690. When compared to single thread implementation on Intel Core i7 3770 with 3.7 GHz frequency, the first accelerated part of training process was speeded up 151 times and the second accelerated part was speeded up 124 times using two dual-core GPUs. This paper examines overall computational time of the Viola-Jones training process with the use of: one core CPU, one GPU, two GPUs, 3 GPUs and 4GPUs. Trained detector was applied on testing set containing real world images.
Keywords :
graphics processing units; object detection; Intel Core i7 3770; dual-core NVIDIA GeForce GTX 690; frequency 3.7 GHz; graphic processing units; high-performance computation capabilities; multiCore GPU implementation; object detection; offloading compute-intensive portions; single thread implementation; speeding up Viola-Jones algorithm; Acceleration; Detectors; Face; Graphics processing units; Instruction sets; Testing; Training; CUDA; Viola-Jones detector; face detection; high performance computing; multi-GPU;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Telecommunications and Signal Processing (TSP), 2013 36th International Conference on
Conference_Location :
Rome
Print_ISBN :
978-1-4799-0402-0
Type :
conf
DOI :
10.1109/TSP.2013.6614050
Filename :
6614050
Link To Document :
بازگشت