• DocumentCode
    3253389
  • Title

    Application of Bayesian statistics and optimization to difference equation parameter estimation

  • Author

    Perttunen, Cary D. ; Stuckman, Bruce E. ; Laursen, Norman W.

  • Author_Institution
    Dept. of Electr. Eng., Louisville Univ., KY, USA
  • fYear
    1989
  • fDate
    0-0 1989
  • Firstpage
    451
  • Lastpage
    453
  • Abstract
    The authors present a method for estimating the parameters of a difference equation from data that has random error in both the input and output measurements. A stochastic global optimization technique iteratively determines the set of parameters that maximize the posterior density function for the parameters conditioned upon the error between the measured output data and simulated data derived from the model. Examples show that errors in parameter estimates in the presence of input error can be reduced in comparison with other techniques.<>
  • Keywords
    Bayes methods; difference equations; optimisation; parameter estimation; stochastic processes; Bayesian statistics; difference equation parameter estimation; posterior density function; random error; stochastic global optimization technique; Bayes procedures; Difference equations; Optimization methods; Parameter estimation; Stochastic processes;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Systems Engineering, 1989., IEEE International Conference on
  • Conference_Location
    Fairborn, OH, USA
  • Type

    conf

  • DOI
    10.1109/ICSYSE.1989.48712
  • Filename
    48712