DocumentCode :
3260046
Title :
Spatial Multidimensional Sequence Clustering
Author :
Assent, Ira ; Krieger, Ralph ; Glavic, Boris ; Seidl, Thomas
Author_Institution :
Data Manage. & Exploration Group, RWTH Aachen Univ.
fYear :
2006
fDate :
Dec. 2006
Firstpage :
343
Lastpage :
348
Abstract :
Measurements at different time points and positions in large temporal or spatial databases requires effective and efficient data mining techniques. For several parallel measurements, finding clusters of arbitrary length and number of attributes, poses additional challenges. We present a novel algorithm capable of finding parallel clusters in different structural quality parameter values for river sequences used by hydrologists to develop measures for river quality improvements
Keywords :
environmental science computing; pattern clustering; data mining techniques; parallel clusters; river quality improvements; river sequences; spatial databases; spatial multidimensional sequence clustering; structural quality parameter values; temporal databases; Clustering algorithms; Data mining; Hydrologic measurements; Hydrology; Length measurement; Multidimensional systems; Position measurement; Rivers; Spatial databases; Time measurement;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Data Mining Workshops, 2006. ICDM Workshops 2006. Sixth IEEE International Conference on
Conference_Location :
Hong Kong
Print_ISBN :
0-7695-2702-7
Type :
conf
DOI :
10.1109/ICDMW.2006.153
Filename :
4063651
Link To Document :
بازگشت