• DocumentCode
    3260581
  • Title

    A Max-Min Approach for Hiding Frequent Itemsets

  • Author

    Moustakides, George V. ; Verykios, Vassilios S.

  • Author_Institution
    Dept. of Comput. & Commun. Eng., Thessaly Univ., Volos
  • fYear
    2006
  • fDate
    Dec. 2006
  • Firstpage
    502
  • Lastpage
    506
  • Abstract
    In this paper we are proposing a new algorithmic approach for sanitizing raw data from sensitive knowledge in the context of mining of association rules. The new approach (a) relies on the maxmin criterion which is a method in decision theory for maximizing the minimum gain, and (b) builds upon the border theory of frequent itemsets
  • Keywords
    data encapsulation; data mining; minimax techniques; border theory; data mining; data sanitation; frequent itemset hiding; max-min approach; Association rules; Context; Data engineering; Data mining; Data privacy; Databases; Decision theory; Itemsets; Knowledge engineering; Performance evaluation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Data Mining Workshops, 2006. ICDM Workshops 2006. Sixth IEEE International Conference on
  • Conference_Location
    Hong Kong
  • Print_ISBN
    0-7695-2702-7
  • Type

    conf

  • DOI
    10.1109/ICDMW.2006.8
  • Filename
    4063679