DocumentCode :
3260833
Title :
A grid-based ACO algorithm for parameters optimization in support vector machines
Author :
Zhang, Xiaoli ; Chen, Xuefeng ; Zhang, Zhousuo ; He, Zhengjia
Author_Institution :
Sch. of Mech. Eng., Xian Jiaotong Univ., Xian
fYear :
2008
fDate :
26-28 Aug. 2008
Firstpage :
805
Lastpage :
808
Abstract :
The parameters optimization of the penalty constant C and the bandwidth of the radial basis function (RBF) kernel sigma is an important step in establishing an efficient and high-performance support vector machines (SVMs) model. Aiming at optimizing the parameters of SVMs, this paper presents a grid-based ant colony optimization (ACO) algorithm to choose parameters C and sigma automatically for SVMs instead of selecting parameters randomly by humanpsilas experience, so that the generalization error can be reduced and the generalization performance can be improved simultaneously. Some experimental results confirm the feasibility and efficiency of the approach.
Keywords :
optimisation; radial basis function networks; support vector machines; ant colony optimization; grid-based ACO algorithm; parameters optimization; radial basis function kernel; support vector machines; Ant colony optimization; Bandwidth; Genetic algorithms; Helium; Kernel; Manufacturing systems; Mechanical engineering; Statistical learning; Support vector machines; Systems engineering and theory;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Granular Computing, 2008. GrC 2008. IEEE International Conference on
Conference_Location :
Hangzhou
Print_ISBN :
978-1-4244-2512-9
Electronic_ISBN :
978-1-4244-2513-6
Type :
conf
DOI :
10.1109/GRC.2008.4664645
Filename :
4664645
Link To Document :
بازگشت