DocumentCode :
3260964
Title :
A robust adaptive sliding mode tracking control using an RBF neural network for robotic manipulators
Author :
Zhihong, Man ; Yu, X.H. ; Eshraghian, K. ; Palaniswami, Marimuthu
Author_Institution :
Dept. of Comput. & Commun. Eng., Edith Cowan Univ., WA, Australia
Volume :
5
fYear :
1995
fDate :
Nov/Dec 1995
Firstpage :
2403
Abstract :
A new robust adaptive sliding mode tracking control scheme using an RBF neural network is proposed for rigid robotic manipulators to achieve robustness and asymptotic error convergence. A key feature of this scheme is that the prior knowledge of the upper bound of the system uncertainties is not required. An adaptive RBF neural network is used to learn the upper bound of system uncertainties. The output of the neural network is then used as a compensator parameter in the sense that the effects of the system uncertainties can be eliminated and asymptotic error convergence can be obtained for the closed loop robotic control system
Keywords :
adaptive control; convergence; feedforward neural nets; manipulators; neurocontrollers; robust control; tracking; uncertain systems; variable structure systems; RBF neural network; asymptotic error convergence; closed loop robotic control system; compensator parameter; rigid robotic manipulators; robust adaptive sliding mode tracking control; robustness; system uncertainties; Adaptive control; Convergence; Error correction; Neural networks; Programmable control; Robots; Robust control; Sliding mode control; Uncertainty; Upper bound;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 1995. Proceedings., IEEE International Conference on
Conference_Location :
Perth, WA
Print_ISBN :
0-7803-2768-3
Type :
conf
DOI :
10.1109/ICNN.1995.487738
Filename :
487738
Link To Document :
بازگشت