DocumentCode :
3263059
Title :
Fuzzy classification function of entropy regularized fuzzy c-means algorithm for data with tolerance using kernel function
Author :
Kanzawa, Yuchi ; Endo, Yasunori ; Miyamoto, Sadaaki
Author_Institution :
Shibaura Inst. of Technol., Tokyo
fYear :
2008
fDate :
26-28 Aug. 2008
Firstpage :
350
Lastpage :
355
Abstract :
In this paper, the fuzzy classification functions of the entropy regularized fuzzy c-means for data with tolerance using kernel functions are proposed. First, the standard clustering algorithm for data with tolerance using kernel functions are introduced. Second, the fuzzy classification function for fuzzy c-means without tolerance using kernel functions is discussed as the solution of a certain optimization problem. Third, the optimization problem is shown so that the solutions are the fuzzy classification function values for the entropy regularized fuzzy c-means algorithms using kernel functions with respect to data with tolerance. Fourth, Karush-Kuhn-Tucker conditions of the objective function is considered, and the iterative algorithm is proposed for the optimization problem. Some numerical examples are shown.
Keywords :
fuzzy set theory; pattern classification; Karush-Kuhn-Tucker conditions; entropy regularized fuzzy c-means algorithm; fuzzy classification function; iterative algorithm; kernel function; optimization problem; standard clustering algorithm; Clustering algorithms; Entropy; Humans; Iterative algorithms; Kernel; Prototypes; Support vector machine classification; Support vector machines;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Granular Computing, 2008. GrC 2008. IEEE International Conference on
Conference_Location :
Hangzhou
Print_ISBN :
978-1-4244-2512-9
Electronic_ISBN :
978-1-4244-2513-6
Type :
conf
DOI :
10.1109/GRC.2008.4664765
Filename :
4664765
Link To Document :
بازگشت