DocumentCode :
3263730
Title :
A Linear Gaussian Framework for Decoding of Perceived Images
Author :
Van Gerven, Marcel A J ; Heskes, Tom
Author_Institution :
Donders Inst. for Brain, Cognition & Behaviour, Radboud Univ. Nijmegen, Nijmegen, Netherlands
fYear :
2012
fDate :
2-4 July 2012
Firstpage :
1
Lastpage :
4
Abstract :
With the advent of sophisticated acquisition and analysis techniques, decoding the contents of someone´s experience has become a reality. We propose a simple linear Gaussian framework where decoding relies on the inversion of properly regularized encoding models. We show that this approach yields state-of-the-art decoding performance on an fMRI dataset.
Keywords :
Gaussian processes; biomedical MRI; image coding; medical image processing; encoding models; fMRI dataset; functional magnetic resonance imaging; linear Gaussian framework; perceived image decoding; Brain; Decoding; Encoding; Humans; Image reconstruction; Linear regression; Visualization; Bayesian decoding; fMRI analysis; perception;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition in NeuroImaging (PRNI), 2012 International Workshop on
Conference_Location :
London
Print_ISBN :
978-1-4673-2182-2
Type :
conf
DOI :
10.1109/PRNI.2012.10
Filename :
6295913
Link To Document :
بازگشت