DocumentCode :
326815
Title :
Robust H2-control for discrete-time Markovian jump linear systems
Author :
Costa, Oswaldo L V ; Marques, Ricardo P.
Author_Institution :
Dept. of Electron. Eng., Sao Paulo Univ., Brazil
Volume :
2
fYear :
1998
fDate :
21-26 Jun 1998
Firstpage :
746
Abstract :
This paper deals with the robust H2-control of discrete-time Markovian jump linear systems. Uncertainties satisfying some norm bounded conditions are considered on the parameters of the system. An upper bound for the H2-control problem is derived in terms of an LMI optimization problem. For the case in which there are no uncertainties, we show that the convex formulation is equivalent to the existence of the mean square stabilizing solution for the set of coupled algebraic Riccati equations arising on the quadratic optimal control problem of discrete-time Markovian jump linear systems. Therefore, for the case with no uncertainties, the convex formulation considered imposes no extra conditions than those in the usual dynamic programming approach
Keywords :
Markov processes; Riccati equations; convex programming; discrete time systems; linear quadratic control; linear systems; matrix algebra; robust control; stochastic systems; uncertain systems; H2-control; Markovian jump parameter systems; algebraic Riccati equations; convex programming; discrete-time systems; linear matrix inequality; linear systems; optimization; quadratic optimal control; robust control; upper bound; Linear systems; Riccati equations; Robustness; State-space methods; Tin; Zinc;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 1998. Proceedings of the 1998
Conference_Location :
Philadelphia, PA
ISSN :
0743-1619
Print_ISBN :
0-7803-4530-4
Type :
conf
DOI :
10.1109/ACC.1998.703507
Filename :
703507
Link To Document :
بازگشت