DocumentCode
3272152
Title
Infinite vs. Finite Space-Bounded Randomized Computations
Author
Kralovic, R.
Author_Institution
Dept. of Comput. Sci., ETH Zurich, Zurich, Switzerland
fYear
2009
fDate
15-18 July 2009
Firstpage
316
Lastpage
325
Abstract
Probabilistic computations can be very powerful with respect to space complexity, e.g. for logarithmic space, zero probability of error is equivalent to nondeterminism. This power, however, depends on the possibility of infinite computations. A natural open question is if this feature is necessary. We answer the question for sweeping finite automata (SFAs), i.e. two-way finite automata that can change the direction of head motion at endmarkers only. We show that zero probability of error SFAs allowing infinite computations can be exponentially more succinct than zero probability of error SFAs forbidding them. We also provide a strengthened form of this result showing that forbidding infinite computations can not be traded for the more powerful bounded-error probabilistic model. To prove our results, we introduce a technique for proving lower bounds on space complexity of SFAs that generalizes the notion of generic words discovered by M. Sipser.
Keywords
computational complexity; finite automata; probabilistic automata; bounded-error probabilistic model; finite space-bounded randomized computations; infinite space-bounded randomized computations; probabilistic computations; space complexity; sweeping finite automata; Automata; Birth disorders; Computational complexity; Computational modeling; Computer errors; Computer science; Extraterrestrial measurements; Magnetic heads; Polynomials; Turing machines; Las Vegas randomization; descriptional complexity; finite automata; probabilistic computations;
fLanguage
English
Publisher
ieee
Conference_Titel
Computational Complexity, 2009. CCC '09. 24th Annual IEEE Conference on
Conference_Location
Paris
ISSN
1093-0159
Print_ISBN
978-0-7695-3717-7
Type
conf
DOI
10.1109/CCC.2009.10
Filename
5231391
Link To Document