• DocumentCode
    327355
  • Title

    Data-dependent kn-NN estimators consistent for arbitrary processes

  • Author

    Kulkarni, S.R. ; Posner, S.E. ; Sandilya, S.

  • Author_Institution
    Dept. of Electr. Eng., Princeton Univ., NJ, USA
  • fYear
    1998
  • fDate
    16-21 Aug 1998
  • Firstpage
    388
  • Abstract
    Let X1,X2,... be an arbitrary random process taking values in a totally bounded subset of a separable metric space. Associated with Xi we observe Yi drawn from an unknown conditional distribution F(y|Xi=x) with continuous regression function m(x)=E[Y|X=·x]. The problem of interest is to estimate Yn based on Xn and the data {(Xi ,Yi)}i=1n-1. We construct an appropriate data-dependent nearest neighbor estimator and show, with a very elementary proof, that it is consistent for every process X1 ,X2
  • Keywords
    parameter estimation; random processes; statistical analysis; arbitrary random process; bounded subset; conditional distribution; continuous regression function; data-dependent nearest neighbor estimator; separable metric space; Convergence; Information theory; Nearest neighbor searches; Random processes; Sampling methods;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Theory, 1998. Proceedings. 1998 IEEE International Symposium on
  • Conference_Location
    Cambridge, MA
  • Print_ISBN
    0-7803-5000-6
  • Type

    conf

  • DOI
    10.1109/ISIT.1998.708993
  • Filename
    708993