DocumentCode :
3275104
Title :
Nonlinear function learning using optimal radial basis function networks
Author :
Krzyzak, Adam
Author_Institution :
Dept. of Comput. Sci., Concordia Univ., Montreal, Que.
fYear :
2001
fDate :
2001
Firstpage :
93
Abstract :
We derive optimal MISE kernel radial basis networks in regression estimation problem
Keywords :
learning (artificial intelligence); mean square error methods; nonlinear functions; optimisation; radial basis function networks; statistical analysis; mean integrated square error; nonlinear function learning; optimal MISE kernel radial basis networks; regression estimation; Artificial intelligence; Computer science; Convergence; Electronic mail; Error analysis; Fourier transforms; Kernel; Neural networks; Polynomials; Radial basis function networks;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2001. Proceedings. 2001 IEEE International Symposium on
Conference_Location :
Washington, DC
Print_ISBN :
0-7803-7123-2
Type :
conf
DOI :
10.1109/ISIT.2001.935956
Filename :
935956
Link To Document :
بازگشت