DocumentCode :
3289308
Title :
Optimal risk-sensitive control for third degree polynomial systems
Author :
Alcorta G, Aracelia ; Basin, M. ; Anguiano R, Sonia G ; Yosefat Nava, A.
Author_Institution :
Dept. of Phys. & Math. Sci., Autonomous Univ. of Nuevo Leon, San Nicolas de los Garza, Mexico
fYear :
2010
fDate :
June 30 2010-July 2 2010
Firstpage :
7046
Lastpage :
7051
Abstract :
The optimal exponential-quadratic control problem is considered for stochastic Gaussian systems with polynomial third degree drift terms and intensity parameters multiplying diffusion terms in the state equation. The closed-form optimal control algorithm is obtained using a quadratic value function as a solution to the corresponding Hamilton-Jacobi-Bellman equation. The performance of the obtained risk-sensitive regulator for stochastic third degree polynomial systems is verified in a numerical example, through comparing the exponential-quadratic criteria values for the optimal risk-sensitive control and third degree control algorithms. The simulation results reveal strong advantages in favor of the designed risk-sensitive algorithm in regard to the final criteria values for all values of the parameter ε.
Keywords :
linear quadratic control; multivariable control systems; nonlinear control systems; parameter estimation; polynomials; quadratic programming; risk analysis; stochastic systems; Hamilton-Jacobi-Bellman equation; exponential-quadratic control; optimal control; polynomial system; quadratic value function; risk-sensitive control; state equation; stochastic Gaussian systems; third degree control; Algorithm design and analysis; Control systems; Differential equations; Dynamic programming; Noise level; Optimal control; Polynomials; Regulators; Stochastic processes; Stochastic systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference (ACC), 2010
Conference_Location :
Baltimore, MD
ISSN :
0743-1619
Print_ISBN :
978-1-4244-7426-4
Type :
conf
DOI :
10.1109/ACC.2010.5531292
Filename :
5531292
Link To Document :
بازگشت