DocumentCode :
3290167
Title :
A maximum likelihood approach to recursive polynomial chaos parameter estimation
Author :
Pence, B.L. ; Fathy, H.K. ; Stein, J.L.
Author_Institution :
Mech. Eng. Dept., Univ. of Michigan, Ann Arbor, MI, USA
fYear :
2010
fDate :
June 30 2010-July 2 2010
Firstpage :
2144
Lastpage :
2151
Abstract :
This paper presents a method for recursively estimating the static parameters of linear or nonlinear stochastic dynamic systems given the systems´ inputs and outputs. The paper accomplishes this objective by combining polynomial chaos theory with maximum likelihood estimation. The parameter estimates are calculated in a recursive or iterative manner. To the best of the author´s knowledge, this is the first paper to address recursive maximum likelihood parameter estimation using polynomial chaos theory. The proposed approach is demonstrated on two systems: a linear 2nd order system with unknown damping and natural frequency, and a nonlinear Van der Pol oscillator with an unknown nonlinear damping coefficient. Because this recursive estimator is applicable to nonlinear systems, the authors portend that this novel formulation will be useful for a broad range of estimation problems.
Keywords :
chaos; maximum likelihood estimation; nonlinear dynamical systems; parameter estimation; polynomials; maximum likelihood estimation; nonlinear Van der Pol oscillator; nonlinear damping coefficient; nonlinear stochastic dynamic systems; parameter estimates; polynomial chaos theory; recursive polynomial chaos parameter estimation; Chaos; Damping; Frequency; Maximum likelihood estimation; Nonlinear systems; Oscillators; Parameter estimation; Polynomials; Recursive estimation; Stochastic systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference (ACC), 2010
Conference_Location :
Baltimore, MD
ISSN :
0743-1619
Print_ISBN :
978-1-4244-7426-4
Type :
conf
DOI :
10.1109/ACC.2010.5531345
Filename :
5531345
Link To Document :
بازگشت