DocumentCode :
3299576
Title :
Unified system of encoding and decoding erasures and errors for algebraic geometry codes
Author :
Matsui, Hajime
Author_Institution :
Dept. of Electron. & Inf. Sci., Toyota Technol. Inst., Nagoya, Japan
fYear :
2010
fDate :
17-20 Oct. 2010
Firstpage :
1001
Lastpage :
1006
Abstract :
In this paper, a fundamental lemma in algebraic coding theory is established, which is frequently appeared in the encoding and decoding for algebraic codes such as Reed-Solomon and algebraic geometry codes. This lemma states that two vector spaces, one corresponds to information symbols and the other is indexed by the support of Gröbner basis, are canonically isomorphic, and moreover, the isomorphism is given in terms of extension by linear feedback shift registers from Gröbner basis and discrete Fourier transforms. Next, we apply the lemma to unified system of encoding and decoding erasure-errors in algebraic geometry codes. Finally, we comment on an improved bound for the generic erasure-error correcting capabilities.
Keywords :
algebraic geometric codes; decoding; discrete Fourier transforms; feedback; linear codes; Grobner basis; algebraic geometry code; decoding erasure; decoding error; discrete Fourier transform; encoding erasure; encoding error; information symbol; linear feedback shift register; Arrays; Decoding; Discrete Fourier transforms; Encoding; Geometry; Systematics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory and its Applications (ISITA), 2010 International Symposium on
Conference_Location :
Taichung
Print_ISBN :
978-1-4244-6016-8
Electronic_ISBN :
978-1-4244-6017-5
Type :
conf
DOI :
10.1109/ISITA.2010.5649516
Filename :
5649516
Link To Document :
بازگشت