DocumentCode :
3299664
Title :
Decoding Reed-Solomon codes up to the Sudan radius with the Euclidean algorithm
Author :
Zeh, Alexander ; Li, Wenhui
Author_Institution :
Dept. of Telecommun. & Appl. Inf. Theor., Univ. of Ulm, Ulm, Germany
fYear :
2010
fDate :
17-20 Oct. 2010
Firstpage :
986
Lastpage :
990
Abstract :
We modify the Euclidean algorithm of Feng and Tzeng to decode Reed-Solomon (RS) codes up to the Sudan radius. The basic steps are the virtual extension to an Interleaved RS code and the reformulation of the multi-sequence shift-register problem of varying length to a multi-sequence problem of equal length. We prove the reformulation and analyze the complexity of our new decoding approach. Furthermore, the extended key equation, that describes the multi-sequence problem, is derived in an alternative polynomial way.
Keywords :
Reed-Solomon codes; binary sequences; decoding; Euclidean algorithm; Reed-Solomon code; Sudan radius; multisequence problem; multisequence shift register problem; Complexity theory; Decoding; Mathematical model; Nickel; Polynomials; Euclidean algorithm; Interleaved Reed-Solomon (IRS) codes; Reed-Solomon (RS) codes; Shift-Register synthesis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory and its Applications (ISITA), 2010 International Symposium on
Conference_Location :
Taichung
Print_ISBN :
978-1-4244-6016-8
Electronic_ISBN :
978-1-4244-6017-5
Type :
conf
DOI :
10.1109/ISITA.2010.5649520
Filename :
5649520
Link To Document :
بازگشت