DocumentCode :
3301487
Title :
Segmentation of medical image based on mean shift and deterministic annealing EM algorithm
Author :
Lee, Myung-Eun ; Kim, Soo-Hyung ; Cho, Wan-Hyun ; Zhao, Xin
Author_Institution :
Chonnam Nat. Univ., Gwangju
fYear :
2008
fDate :
March 31 2008-April 4 2008
Firstpage :
937
Lastpage :
938
Abstract :
In this paper, we use the mean shift procedure to determine the number of components in a mixture model and to detect their modes of each mixture component. Next, we have adopted the Gaussian mixture model to represent the probability distribution of feature vectors. A deterministic annealing expectation maximization algorithm is used to estimate the parameters of the GMM. The experimental results show that the mean shift part of the proposed algorithm is efficient to determine the number of components and modes of each component in mixture models. And it shows that the DAEM part provides a global optimal solution for the parameter estimation in a mixture model.
Keywords :
Gaussian processes; expectation-maximisation algorithm; image segmentation; medical image processing; parameter estimation; Gaussian mixture model; deterministic annealing expectation maximization; mean shift expectation maximization; medical image segmentation; parameter estimation; Annealing; Biomedical imaging; Clustering algorithms; Computer science; Gaussian distribution; Image segmentation; Kernel; Parameter estimation; Probability distribution; Statistics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Systems and Applications, 2008. AICCSA 2008. IEEE/ACS International Conference on
Conference_Location :
Doha
Print_ISBN :
978-1-4244-1967-8
Electronic_ISBN :
978-1-4244-1968-5
Type :
conf
DOI :
10.1109/AICCSA.2008.4493653
Filename :
4493653
Link To Document :
بازگشت