DocumentCode :
3301807
Title :
Sparse manifold embedding Tri-factor Nonnegative Matrix Factorization
Author :
Xiaobing Pei ; Zehua Lv ; Changqin Chen
Author_Institution :
Sch. of Software, HuaZhong Univ. of Sci. & Technol. Wuhan, Wuhan, China
fYear :
2013
fDate :
13-15 Dec. 2013
Firstpage :
231
Lastpage :
235
Abstract :
Tri-factor Nonnegative Matrix Factorization (TNMF) is of use in simultaneously clustering rows and columns of the input data matrix. In this paper, we present a Sparse Manifold Embedding Tri-factor Nonnegative Matrix Factorization (STNMF) for data clustering. Similar to most graph regularized NMF, STNMF is to extend the original TNMF by incorporating the graph regularized and sparse manifold embedding constraints into the TNMF model. The key advantage of this method is that the STNMF simultaneously compute sparse similarity matrix, clustering rows and columns of the input data matrix. Finally, our experiment results are presented.
Keywords :
graph theory; matrix decomposition; pattern clustering; TNMF; data clustering; graph regularized NMF; input data matrix; simultaneously clustering columns; simultaneously clustering rows; sparse manifold embedding; tri-factor nonnegative matrix factorization; Clustering algorithms; Entropy; Manifolds; Matrix decomposition; Optimization; Sparse matrices; Symmetric matrices; Nonnegative matrix factorization; clustering;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Granular Computing (GrC), 2013 IEEE International Conference on
Conference_Location :
Beijing
Type :
conf
DOI :
10.1109/GrC.2013.6740413
Filename :
6740413
Link To Document :
بازگشت