DocumentCode :
3302116
Title :
New Lower Bounds for Two Multicolor Vertex Folkman Numbers
Author :
Shao, Zehui ; Liang, Meilian ; He, Jiandong ; Xu, Xiaodong
Author_Institution :
Sch. of Inf. Sci. & Technol., Chengdu Univ., Chengdu, China
fYear :
2011
fDate :
19-21 May 2011
Firstpage :
1
Lastpage :
3
Abstract :
For a graph G, G → (α1, α2, ⋯, ar)v means that in every r-coloring of the vertices in G, there exists a monochromatic αi-clique of color i for some i ∈ {1,2,⋯,r}. The vertex Folkman number is defined as Fν(α1, α2, ⋯ ,ar; k) = min{V(G) : G → (α1, α2, ⋯ , ar)v and Kk ⊈ G}. In general, computing lower and upper bounds for vertex Folkman numbers is difficult. In this note, based on theoretical analysis and computation, we show that Fv(2,3,3;4) ≥ 19 and Fv(3,3,3;4) >; 24, and suggest a cvclic graph of order 91 which mav give an upper bound for Fv(3,3,3;4).
Keywords :
graph colouring; number theory; lower bounds; multicolor vertex Folkman numbers; vertex coloring; Argon; Computers; Educational institutions; Electronic mail; Information science; Upper bound;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer and Management (CAMAN), 2011 International Conference on
Conference_Location :
Wuhan
Print_ISBN :
978-1-4244-9282-4
Type :
conf
DOI :
10.1109/CAMAN.2011.5778782
Filename :
5778782
Link To Document :
بازگشت