• DocumentCode
    3309455
  • Title

    Clustering using chemical and colonial odors of real ants

  • Author

    Masmoudi, N. ; Azzag, Hanane ; Lebbah, Mustapha ; Bertelle, Cyrille

  • Author_Institution
    LITIS, Univ. of Havre, France
  • fYear
    2013
  • fDate
    12-14 Aug. 2013
  • Firstpage
    207
  • Lastpage
    213
  • Abstract
    We suggest in this paper a new automatic data clustering model based on the behavior of real ants. Drawing on a simulation of colonial odors and pheromone mechanisms, we set up complete dynamic graphs to solve the problem of data clustering. Using graph we will clarify the relationships between clusters of data.
  • Keywords
    chemical engineering computing; data mining; digital simulation; graph theory; pattern clustering; automatic data clustering model; chemical odors; colonial odors; complete dynamic graphs; data mining; pheromone mechanisms; real ants; Classification algorithms; Ants behavior; Clustering; Data analysis; Swarm intelligence;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Nature and Biologically Inspired Computing (NaBIC), 2013 World Congress on
  • Conference_Location
    Fargo, ND
  • Print_ISBN
    978-1-4799-1414-2
  • Type

    conf

  • DOI
    10.1109/NaBIC.2013.6617863
  • Filename
    6617863