DocumentCode :
3310032
Title :
A Novel Power Estimation Method for On-chip VLSI Distributed RLCG Global Interconnects Using Model Order Reduction Technique
Author :
Kar, Rajib ; Maheshwari, V. ; Mondal, Sangeeta ; Maqbool, Md ; Mal, A.K. ; Bhattacharjee, A.K.
Author_Institution :
Dept. of Electron. & Commun. Eng., Nat. Inst. of Technol. Durgapur, Durgapur, India
fYear :
2010
fDate :
20-21 June 2010
Firstpage :
105
Lastpage :
109
Abstract :
Due to high packaging density of components, power is increasingly becoming the bottleneck for the design of high performance VLSI circuits. It is essential to analyze how the various components of power are likely to scale in the future, thereby identifying the key problematic areas. This is an important fact because the conventional design, analysis, and synthesis of VLSI circuits are based on the assumption that gates are the main sources of on-chip power consumption. While most analysis focus on the timing aspects of interconnects, power consumption is also important. In this paper, the power distribution estimation of interconnects is studied using a reduced-order model. The relation between power consumption and the poles and residues of a transfer function is derived, and an appropriate driver model is developed, allowing power consumption to be computed efficiently. At higher frequency of operations, of the order of few GHz, the interconnect is to be analyzed with a distributed RLCG model. Because at very high frequency, the dielectric material deviates from it’s ideal nature. This gives rise to the shunt conductance matrices. In this paper we have considered the high frequency effects and modeled the interconnect as distributed RLCG segments to compute the interconnect power dissipation. The results obtained from SPICE simulation justify the accuracy of our model.
Keywords :
Circuit synthesis; Energy consumption; Frequency; Integrated circuit interconnections; Packaging; Power distribution; Reduced order systems; Timing; Transfer functions; Very large scale integration; Model Order Reduction; Moment matching; Power estimation; RLCG Interconnect;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Advances in Computer Engineering (ACE), 2010 International Conference on
Conference_Location :
Bangalore, Karnataka, India
Print_ISBN :
978-1-4244-7154-6
Type :
conf
DOI :
10.1109/ACE.2010.10
Filename :
5532866
Link To Document :
بازگشت