Title :
On the stabilization of permanently excited linear systems
Author :
Chitour, Yacine ; Sigalotti, Mario
Author_Institution :
Lab. des Signaux et Syst., Supelec, Gif-sur-Yvette, France
Abstract :
We consider control systems of the type x¿ = Ax+¿(t)ub, where u ¿ R, (A; b) is a controllable pair and ¿ is an unknown time-varying signal with values in [0; 1] satisfying a permanent excitation condition of the kind ¿t+T t ¿ ¿ ¿for 0 < ¿ ¿ T independent on t. We prove that such a system is stabilizable with a linear feedback depending only on the pair (T; ¿) if the real part of the eigenvalues of A is non positive. The stabilizability does not hold in general for matrices A whose eigenvalues have positive real part. Moreover, the question of whether the system can be stabilized with an arbitrarily large rate of convergence gives rise to a bifurcation phenomenon in dependence of the parameter ¿/T.
Keywords :
bifurcation; eigenvalues and eigenfunctions; feedback; linear systems; matrix algebra; stability; time-varying systems; bifurcation phenomenon; control systems; eigenvalues; linear feedback; matrices; permanently excited linear systems; stabilization; time-varying signal; Adaptive control; Bifurcation; Control systems; Convergence; Eigenvalues and eigenfunctions; Feedback; Linear algebra; Linear systems; Symmetric matrices; Time varying systems;
Conference_Titel :
Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on
Conference_Location :
Shanghai
Print_ISBN :
978-1-4244-3871-6
Electronic_ISBN :
0191-2216
DOI :
10.1109/CDC.2009.5400507