DocumentCode :
3312653
Title :
Matrix realisations of multilayer perceptron ANN
Author :
Chidzonga, It F.
Author_Institution :
Dept. of Electr. Eng., Zimbabwe Univ., Harare, Zimbabwe
fYear :
1997
fDate :
9-10 Sep 1997
Firstpage :
181
Lastpage :
186
Abstract :
The backpropagation neural network training algorithm is formulated via matrix transformations as opposed to the usual indexed algebraic scalar approach. This formulation allows for easy visualisation and understanding of error propagation and the consequent weight adjustment. The so configured network can be readily unravelled for further study if required. Illustrative results on simple and concise Matlab simulation are presented
Keywords :
backpropagation; matrix algebra; multilayer perceptrons; neural net architecture; Matlab simulation; backpropagation neural network training algorithm; error propagation; matrix realisations; matrix transformations; multilayer perceptron ANN; multilayer perceptron architecture; visualisation; weight adjustment; Artificial neural networks; Error correction; Filtering; Neural networks;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Communications and Signal Processing, 1997. COMSIG '97., Proceedings of the 1997 South African Symposium on
Conference_Location :
Grahamstown
Print_ISBN :
0-7803-4173-2
Type :
conf
DOI :
10.1109/COMSIG.1997.630006
Filename :
630006
Link To Document :
بازگشت