DocumentCode :
3312833
Title :
A field test with self-organized modeling for knowledge discovery in a fleet of city buses
Author :
Byttner, Stefan ; Nowaczyk, Slawomir ; Prytz, Rune ; Rognvaldsson, Thorsteinn
Author_Institution :
CAISR, Halmstad Univ., Halmstad, Sweden
fYear :
2013
fDate :
4-7 Aug. 2013
Firstpage :
896
Lastpage :
901
Abstract :
Fleets of commercial vehicles represent an excellent real life setting for ubiquitous knowledge discovery. There are many electronic control units onboard a modern bus or truck, with hundreds of signals being transmitted between them on the controller area network. The growing complexity of the vehicles has lead to a significant desire to have systems for fault detection, remote diagnostics and maintenance prediction. This paper aims to show that it is possible to discover useful diagnostic knowledge by a self-organized algorithm in the scenario of a fleet of city buses. The approach is demonstrated as a process consisting of two parts; Unsupervised modeling (where interesting features are discovered) and Guided search (where the previously found features are coupled to additional information sources). The modeling part searches for simple linear models in a group of vehicles, where interesting features are selected based on both non-randomness in relations and variability in the group. It is shown in an eight months long data collection study that this approach was able to discover features related to broken wheelspeed sensors. Strikingly, deviations in these features (for the vehicles with broken sensors) can be observed up to several months before a breakdown occur. This potentially allows for sufficient time to schedule the vehicle for maintenance and prepare the workshop with relevant components.
Keywords :
computerised instrumentation; controller area networks; data mining; fault diagnosis; feature extraction; maintenance engineering; sensors; traffic information systems; ubiquitous computing; broken wheelspeed sensors; city bus fleet; commercial vehicle fleets; controller area network; diagnostic knowledge discovery; fault detection; feature discovery; field test; guided search; maintenance prediction; onboard electronic control units; remote diagnostics; self-organized algorithm; self-organized modeling; ubiquitous knowledge discovery; unsupervised modeling; vehicle complexity; vehicle scheduling; Cities and towns; Computational modeling; Data mining; Histograms; Maintenance engineering; Sensors; Vehicles;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Mechatronics and Automation (ICMA), 2013 IEEE International Conference on
Conference_Location :
Takamatsu
Print_ISBN :
978-1-4673-5557-5
Type :
conf
DOI :
10.1109/ICMA.2013.6618034
Filename :
6618034
Link To Document :
بازگشت