DocumentCode :
3313530
Title :
Generalization for calendar attributes using domain generalization graphs
Author :
Randall, D.J. ; Hamilton, H.J. ; Hilderman, R.J.
Author_Institution :
Regina Univ., Sask., Canada
fYear :
1998
fDate :
16-17 May 1998
Firstpage :
177
Lastpage :
184
Abstract :
The paper addresses the problem of generalizing temporal data based on calendar (date and time) attributes The proposed method is based on a domain generalization graph, i.e., a lattice defining a partial order that represents a set of generalization relations for the attribute. The authors specify the components of a domain generalization graph suited to calendar attributes. They define granularity, subset, lookup, and algorithmic methods for specifying generalizations between calendar domains. To reduce the size of the domain generalization graph used in generalization and the number of results shown to the user, they use six types of pruning: reachability pruning, preliminary manual pruning, data range pruning, previous discard pruning, pregeneralization manual pruning, and post generalization pruning
Keywords :
database theory; generalisation (artificial intelligence); graph theory; relational databases; temporal databases; algorithmic methods; calendar attribute generalization; data range pruning; domain generalization graphs; granularity methods; lattice; lookup methods; partial order; post generalization pruning; pregeneralization manual pruning; preliminary manual pruning; previous discard pruning; reachability pruning; relational databases; subset methods; temporal data generalization; Calendars; Data mining; Lattices; Navigation; Relational databases; Research and development management;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Temporal Representation and Reasoning, 1998. Proceedings. Fifth International Workshop on
Conference_Location :
Sanibel Island, FL
Print_ISBN :
0-8186-8473-9
Type :
conf
DOI :
10.1109/TIME.1998.674148
Filename :
674148
Link To Document :
بازگشت