Title :
An extended friction model to capture load and temperature effects in robot joints
Author :
Bittencourt, André Carvalho ; Wernholt, Erik ; Sander-Tavallaey, Shiva ; Brogårdh, Torgny
Author_Institution :
Dept. of Electr. Eng., Linkoping Univ., Linköping, Sweden
Abstract :
Friction is the result of complex interactions between contacting surfaces in a nanoscale perspective. Depending on the application, the different models available are more or less suitable. Available static friction models are typically considered to be dependent only on relative speed of interacting surfaces. However, it is known that friction can be affected by other factors than speed. In this paper, static friction in robot joints is studied with respect to changes in joint angle, load torque and temperature. The effects of these variables are analyzed by means of experiments on a standard industrial robot. Justified by their significance, load torque and temperature are included in an extended static friction model. The proposed model is validated in a wide operating range, reducing the average error a factor of 6 when compared to a standard static friction model.
Keywords :
industrial robots; stiction; temperature control; torque control; extended friction model; industrial robot; load effects; load torque; robot joints; static friction models; temperature effects;
Conference_Titel :
Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on
Conference_Location :
Taipei
Print_ISBN :
978-1-4244-6674-0
DOI :
10.1109/IROS.2010.5650358