Title :
Decentralized Laplacian eigenvalues estimation for networked multi-agent systems
Author :
Franceschelli, Mauro ; Gasparri, Andrea ; Giua, Alessandro ; Seatzu, Carla
Author_Institution :
Dept. of Electr. & Electron. Eng., Univ. of Cagliari, Cagliari, Italy
Abstract :
In this paper we present a novel decentralized algorithm to estimate the eigenvalues of the Laplacian of the network topology of a multi-agent system. The basic idea is to provide a local interaction rule among agents so that their state oscillates only at frequencies corresponding to eigenvalues of the network topology. In this way, the problem of decentralized eigenvalue estimation is mapped into a problem of signal processing, solvable by applying the fast Fourier transform (FFT).
Keywords :
Laplace transforms; eigenvalues and eigenfunctions; fast Fourier transforms; multi-agent systems; decentralized Laplacian eigenvalues estimation; decentralized algorithm; fast Fourier transform; local interaction rule; network topology; networked multiagent system; signal processing; Eigenvalues and eigenfunctions; Fast Fourier transforms; Frequency; Graph theory; Laplace equations; Mobile robots; Multiagent systems; Network topology; Signal processing algorithms; Time varying systems;
Conference_Titel :
Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on
Conference_Location :
Shanghai
Print_ISBN :
978-1-4244-3871-6
Electronic_ISBN :
0191-2216
DOI :
10.1109/CDC.2009.5400723