DocumentCode :
3316999
Title :
A 1.96mm2 low-latency multi-mode crypto-coprocessor for PKC-based IoT security protocols
Author :
Cheng-Rung Tsai ; Ming-Chun Hsiao ; Wen-Chung Shen ; Wu, An-Yeu Andy ; Chen-Mou Cheng
Author_Institution :
Grad. Inst. of Electron. Eng., Nat. Taiwan Univ., Taipei, Taiwan
fYear :
2015
fDate :
24-27 May 2015
Firstpage :
834
Lastpage :
837
Abstract :
In this paper, we present the implementation of a multi-mode crypto-coprocessor, which can support three different public-key cryptography (PKC) engines (NTRU, TTS, Pairing) used in post-quantum and identity-based cryptosystems. The PKC-based security protocols are more energy-efficient because they usually require less communication overhead than symmetric-key-based counterparts. In this work, we propose the first-of-its-kind tri-mode PKC coprocessor for secured data transmission in Internet-of-Things (IoT) systems. For the purpose of low energy consumption, the crypto-coprocessor incorporates three design features, including 1) specialized instruction set for the multi-mode cryptosystems, 2) a highly parallel arithmetic unit for cryptographic kernel operations, and 3) a smart scheduling unit with intelligent control mechanism. By utilizing the parallel arithmetic unit, the proposed crypto-coprocessor can achieve about 50% speed up. Meanwhile, the smart scheduling unit can save up to 18% of the total latency. The crypto-coprocessor was implemented with AHB interface in TSMC 90nm CMOS technology, and the die size is only 1.96 mm2. Furthermore, our chip is integrated with an ARM-based system-on-chip (SoC) platform for functional verification.
Keywords :
CMOS integrated circuits; Internet of Things; coprocessors; cryptographic protocols; CMOS technology; Internet-of-Things systems; IoT security protocols; IoT systems; PKC based security protocols; PKC coprocessor; PKC engines; SoC platform; cryptographic kernel operations; functional verification; highly parallel arithmetic unit; identity based cryptosystems; intelligent control mechanism; multimode cryptocoprocessor; parallel arithmetic unit; post quantum cryptosystems; public key cryptography; secured data transmission; smart scheduling unit; symmetric key based counterparts; system-on-chip; Computer architecture; Elliptic curve cryptography; Engines; Polynomials; System-on-chip; IoT; Public-key cryptography; SoC; crypto-coprocessor;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems (ISCAS), 2015 IEEE International Symposium on
Conference_Location :
Lisbon
Type :
conf
DOI :
10.1109/ISCAS.2015.7168763
Filename :
7168763
Link To Document :
بازگشت