DocumentCode :
3319643
Title :
Parameter Estimation of Neuro-Fuzzy Model by Parallel and Series-Parallel Identification Configurations
Author :
Banakar, Ahmad ; Azeem, Mohammad F.
Author_Institution :
Aligarh Muslim Univ., Aligarh
fYear :
2007
fDate :
23-26 July 2007
Firstpage :
1
Lastpage :
6
Abstract :
In this paper combinations of two well-known identification methods namely series-parallel and parallel configurations, are proposed to identify the learning parameters of neuro-fuzzy inference system. Two new configurations out of four possible combinations in identifying parameter of the neuro-fuzzy system are proposed. These two proposed configurations are devised by applying series-parallel configuration to premise part and parallel configuration to consequent part of neuro-fuzzy system and vice versa. The proposed configurations have been compared with already existing, namely series-parallel and parallel configurations (to both premise and consequent part of neuro-fuuzy system) on two non-linear dynamic systems.
Keywords :
fuzzy neural nets; fuzzy systems; learning (artificial intelligence); parameter estimation; learning; neuro-fuzzy model; nonlinear dynamic systems; parallel identification configuration; parameter estimation; series-parallel identification configuration; Control theory; Educational institutions; Fuzzy neural networks; Fuzzy systems; Nonlinear dynamical systems; Output feedback; Parameter estimation; Power system modeling; Predictive models; System identification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Systems Conference, 2007. FUZZ-IEEE 2007. IEEE International
Conference_Location :
London
ISSN :
1098-7584
Print_ISBN :
1-4244-1209-9
Electronic_ISBN :
1098-7584
Type :
conf
DOI :
10.1109/FUZZY.2007.4295629
Filename :
4295629
Link To Document :
بازگشت