DocumentCode :
3320156
Title :
New Neurofuzzy Training Procedure Based on Participatory Learning Paradigm
Author :
Hell, Michel ; Costa, Pyramo, Jr. ; Gomide, Fernando
Author_Institution :
Campinas State Univ., Campinas
fYear :
2007
fDate :
23-26 July 2007
Firstpage :
1
Lastpage :
6
Abstract :
In this paper we introduce a new approach to train neurofuzzy networks using the participatory learning concept. The participatory learning paradigm tends to emulate the human learning mechanism where an acceptance mechanism determines which observation is used for learning based upon their compatibility with the current beliefs. The performance of the proposed learning scheme is illustrated by an example involving a nonlinear system modeling problem: the thermal modeling of power transformers. Comparisons with other methods reported in the literature and between two dual network structures are also included. The experimental results show the effectiveness of participatory learning in neurofuzzy networks training.
Keywords :
fuzzy neural nets; learning (artificial intelligence); power transformers; acceptance mechanism; compatibility; neurofuzzy training; nonlinear system modeling; participatory learning paradigm; power transformers; thermal modeling; Fuzzy sets; Fuzzy systems; Humans; Neural networks; Nonlinear systems; Power engineering and energy; Power engineering computing; Power system modeling; Power transformers; Training data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Systems Conference, 2007. FUZZ-IEEE 2007. IEEE International
Conference_Location :
London
ISSN :
1098-7584
Print_ISBN :
1-4244-1209-9
Electronic_ISBN :
1098-7584
Type :
conf
DOI :
10.1109/FUZZY.2007.4295664
Filename :
4295664
Link To Document :
بازگشت