DocumentCode :
3323205
Title :
Text Categorization for Aligning Educational Standards
Author :
Yilmazel, Ozgur ; Balasubramanian, Niranjan ; Harwell, Sarah C. ; Bailey, Jennifer ; Diekema, Anne R. ; Liddy, Elizabeth D.
Author_Institution :
Center for Natural Language Process., Syracuse Univ., NY
fYear :
2007
fDate :
Jan. 2007
Firstpage :
73
Lastpage :
73
Abstract :
Standard alignment (where standards describing similar concepts are correlated) is a necessary task in providing full access to educational resources. Manual alignment is time consuming and expensive. We propose an automatic alignment system, using machine learning techniques utilizing natural language processing. In this paper we discuss our experiments on text categorization for automatic alignment. We explore the role of relevant vocabulary sets in automatic alignment
Keywords :
educational administrative data processing; learning (artificial intelligence); natural language processing; standards; text analysis; vocabulary; educational standard alignment; machine learning; natural language processing; text categorization; vocabulary; Atmosphere; Earth; Natural language processing; Software libraries; Soil; Solids; Standards development; Standards organizations; Text categorization; Water resources;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
System Sciences, 2007. HICSS 2007. 40th Annual Hawaii International Conference on
Conference_Location :
Waikoloa, HI
ISSN :
1530-1605
Electronic_ISBN :
1530-1605
Type :
conf
DOI :
10.1109/HICSS.2007.517
Filename :
4076517
Link To Document :
بازگشت