DocumentCode :
3324511
Title :
Improved contrast and spatial resolution with single photon counting (SPC) for an area X-ray imager, the newly developed high-resolution Micro-Angiographic Fluoroscopic (MAF) detector
Author :
Jain, Amit ; Kuhls-Gilcrist, Andrew ; Bednarek, Daniel R. ; Rudin, Stephen
Author_Institution :
Toshiba Stroke Res. Center, Univ. at Buffalo, Buffalo, NY, USA
fYear :
2009
fDate :
Oct. 24 2009-Nov. 1 2009
Firstpage :
3012
Lastpage :
3016
Abstract :
Although in radiological imaging, the prevailing mode of acquisition is the integration of the energy deposited by all x-rays absorbed in the imaging detector, much improvement in image spatial and contrast resolution could be achieved if each individual x-ray photon were detected and counted separately. In this work we compare the conventional energy integration (EI) mode with the new single photon counting (SPC) mode for a recently developed high-resolution Micro-Angiographic Fluoroscopic (MAF) detector, which is uniquely capable of both modes of operation. The MAF has 1024?1024 pixels of 35 microns effective size and is capable of real-time imaging at 30 fps. The large variable gain of its light image intensifier (LII) provides quantum limited operation with essentially no additive instrumentation noise and enables the MAF to operate in both EI and the very sensitive low-exposure SPC modes. We used high LII gain with very low exposure (<1 x-ray photon/pixel) per frame for SPC mode and higher exposure per frame with lower gain for EI mode. Multiple signal-thresholded frames were summed in SPC mode to provide an integrated frame with the same total exposure as EI mode. A heavily K-edge filtered x-ray beam (average energy of 31 keV) was used to provide a nearly monochromatic spectrum. The MTF measured using a standard slit method showed a dramatic improvement for the SPC mode over the EI mode at all frequencies. Images of a line pair phantom also showed improved spatial resolution with 12 lp/mm visible in SPC mode compared to only 8 lp/mm in EI mode. In SPC mode, images of human distal and middle phalanges showed the trabecular structures of the bone with far better contrast and detail. These improvements with the SPC mode should be advantageous for clinical applications where high resolution and/or high contrast are essential such as in mammography and extremity imaging as well as for dual modality applications, which combine nuclear medicine and x-ray imaging - - using a single detector.
Keywords :
X-ray detection; bone; diagnostic radiography; image resolution; X-ray imaging; additive instrumentation noise; area X-ray imager; bone; energy integration mode; heavily K-edge filtered X-ray beam; high-resolution microangiographic fluoroscopic detector; light image intensifier; nuclear medicine; phalanges; quantum limited operation; radiological imaging; single photon counting; trabecular structures; Additive noise; Energy resolution; High-resolution imaging; Image resolution; Optical imaging; Pixel; Spatial resolution; X-ray detection; X-ray detectors; X-ray imaging;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Nuclear Science Symposium Conference Record (NSS/MIC), 2009 IEEE
Conference_Location :
Orlando, FL
ISSN :
1095-7863
Print_ISBN :
978-1-4244-3961-4
Electronic_ISBN :
1095-7863
Type :
conf
DOI :
10.1109/NSSMIC.2009.5401587
Filename :
5401587
Link To Document :
بازگشت