DocumentCode :
3325496
Title :
Implementation of a fast image coding and retrieval system using a GPU
Author :
Sattigeri, Prasanna ; Thiagarajan, Jayaraman J. ; Ramamurthy, Karthikeyan N. ; Spanias, Andreas
Author_Institution :
SenSIP Center & Ind. Consortium, Arizona State Univ., Tempe, AZ, USA
fYear :
2012
fDate :
12-14 Jan. 2012
Firstpage :
5
Lastpage :
8
Abstract :
Sparse coding of image patches is a compact but computationally expensive method of representing images. As part of our SenSIP consortium industry projects, we implement the Orthogonal Matching Pursuit algorithm using a single CUDA kernel on a GPU and sparse codes for image patches are obtained in parallel. Image-based “exact search” and “visually similar search” using the image patch sparse codes are performed. Results demonstrate large speed-up over CPU implementations and good retrieval performance is also achieved.
Keywords :
graphics processing units; image coding; image representation; image retrieval; CPU implementations; GPU; SenSIP consortium industry projects; fast image coding; image patch sparse codes; image patches; image representation; image-based exact search; image-based visually similar search; orthogonal matching pursuit algorithm; retrieval system; single CUDA kernel; sparse coding; Dictionaries; Graphics processing unit; Image coding; Image retrieval; Kernel; Matching pursuit algorithms; Vectors; GPU implementation; Sparse coding; image retrieval; orthogonal matching pursuit;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Emerging Signal Processing Applications (ESPA), 2012 IEEE International Conference on
Conference_Location :
Las Vegas, NV
Print_ISBN :
978-1-4673-0899-1
Type :
conf
DOI :
10.1109/ESPA.2012.6152431
Filename :
6152431
Link To Document :
بازگشت