Title :
Improved machine learning for image category recognition by local color constancy
Author :
Joze, Hamid Reza Vaezi ; Drew, Mark S.
Author_Institution :
Sch. of Comput. Sci., Simon Fraser Univ., Vancouver, BC, Canada
Abstract :
Color constancy is the ability to recognize colors of objects invariant to the color of the light source. Systems for object detection or recognition in images use machine learning based on image descriptors to distinguish object and scene categories. However, there can be large variations in viewing and lighting conditions for real-world scenes, complicating the characteristics of images and consequently the image category recognition task. To reduce the effect of such variations, either color constancy algorithms or illumination-invariant color descriptors could be used. In this paper, we evaluate the performance of straightforward color constancy methods in practice, with respect to their utilization in a standard object classification problem, and also investigate their effects using local versions of these algorithms. These methods are then compared with color invariant descriptors. In a novel contribution, we ascertain that a combination of local color constancy methods and color invariant descriptors improve the performance of object recognition by as much as more than 10 percent, a significant improvement.
Keywords :
image classification; image colour analysis; learning (artificial intelligence); object recognition; color invariant descriptor; illumination-invariant color descriptor; image category recognition; image descriptor; lighting condition; local color constancy; machine learning; object category; object classification; object detection; object recognition; scene category; viewing condition; Color; Image color analysis; Image recognition; Kernel; Light sources; Lighting; Object recognition; Bag of Words; Category Recognition; Local Color Constancy;
Conference_Titel :
Image Processing (ICIP), 2010 17th IEEE International Conference on
Conference_Location :
Hong Kong
Print_ISBN :
978-1-4244-7992-4
Electronic_ISBN :
1522-4880
DOI :
10.1109/ICIP.2010.5651069