Title :
Bootstrapping Autoregressive Plus Noise Processes
Author :
Debes, Christian ; Zoubir, Abdelhak M.
Author_Institution :
Signal Process. Group, Darmstadt Univ. of Technol., Darmstadt
Abstract :
We address the problem of estimating confidence intervals for the parameters of an autoregressive plus noise process, in particular when the additive noise is non-Gaussian. We demonstrate how the independent data bootstrap can be used to solve this problem. We motivate an autoregressive moving-average modeling approach and apply the recursive maximum algorithm for parameter estimation. Computer simulations are carried out to show the performance of the proposed method. Furthermore a real data example from automotive engineering has been considered for assessing our approach. Using a pressure signal from inside the combustion chamber, we show how confidence intervals for the autoregressive parameters can be calculated.
Keywords :
autoregressive moving average processes; noise; recursive estimation; spectral analysis; ARMA modelling; autoregressive moving-average modeling approach; autoregressive plus noise processes; confidence interval estimation problem; independent data bootsrap; nonGaussian additive noise; parametric spectrum estimation; recursive maximum algorithm; Additive noise; Automotive engineering; Combustion; Computer simulation; Equations; Parameter estimation; Signal processing; Signal processing algorithms; Spectral analysis; Yield estimation; parametric spectrum estimation; the bootstrap;
Conference_Titel :
Computational Advances in Multi-Sensor Adaptive Processing, 2007. CAMPSAP 2007. 2nd IEEE International Workshop on
Conference_Location :
St. Thomas, VI
Print_ISBN :
978-1-4244-1713-1
Electronic_ISBN :
978-1-4244-1714-8
DOI :
10.1109/CAMSAP.2007.4497963