Title :
Supervised Descent Method and Its Applications to Face Alignment
Author :
Xuehan Xiong ; De la Torre, Fernando
Author_Institution :
Robot. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA
Abstract :
Many computer vision problems (e.g., camera calibration, image alignment, structure from motion) are solved through a nonlinear optimization method. It is generally accepted that 2nd order descent methods are the most robust, fast and reliable approaches for nonlinear optimization of a general smooth function. However, in the context of computer vision, 2nd order descent methods have two main drawbacks: (1) The function might not be analytically differentiable and numerical approximations are impractical. (2) The Hessian might be large and not positive definite. To address these issues, this paper proposes a Supervised Descent Method (SDM) for minimizing a Non-linear Least Squares (NLS) function. During training, the SDM learns a sequence of descent directions that minimizes the mean of NLS functions sampled at different points. In testing, SDM minimizes the NLS objective using the learned descent directions without computing the Jacobian nor the Hessian. We illustrate the benefits of our approach in synthetic and real examples, and show how SDM achieves state-of-the-art performance in the problem of facial feature detection. The code is available at www.humansensing.cs. cmu.edu/intraface.
Keywords :
computer vision; face recognition; feature extraction; gradient methods; learning (artificial intelligence); least squares approximations; nonlinear programming; 2nd order descent methods; NLS function; SDM; computer vision problems; face alignment; facial feature detection; general smooth function; learned descent directions; nonlinear least square function; nonlinear optimization method; numerical approximations; supervised descent method; Face; Jacobian matrices; Newton method; Shape; Training; Training data; Vectors; face alignment; facial feature tracking; non-linear least squares; supervised descent method;
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on
Conference_Location :
Portland, OR
DOI :
10.1109/CVPR.2013.75