Title :
Estimation of Two-dimensional Class A Noise Model Parameters By Markov Chain Monte Carlo
Author :
Jiang, Yu-Zhong ; Hu, Xiu-lin ; Li, Wen-Lu ; Zhang, Shu-Xia
Abstract :
Antenna arrays are widely employed in communication systems, because the performance improvements over single antenna systems. The noise in multiple antennas may be statistically dependent from antenna to antenna and may be non-Gaussian. In this paper an efficient estimation of two-dimensional version Middleton´s Class A noise model parameters is derived based on Markov Chain Monte Carlo (MCMC). This estimator can estimate five-parameter and hidden states for two-dimensional Class A noise model simultaneously. Simulation of this estimator indicates that this considered estimator is fast converges and low complexity for small data samples.
Keywords :
Markov processes; Monte Carlo methods; antenna arrays; parameter estimation; Markov chain Monte Carlo; antenna arrays; class A noise model parameter estimation; multiple antennas; nonGaussian noise; single antenna system; two-dimensional version Middleton class; Antenna arrays; Background noise; Gaussian noise; Interference; Monte Carlo methods; Noise level; Parameter estimation; State estimation; Statistics; Working environment noise; Impulsive Noise; Middleton Class A Model; Parameter Estimation; non-Gaussian Noise;
Conference_Titel :
Computational Advances in Multi-Sensor Adaptive Processing, 2007. CAMPSAP 2007. 2nd IEEE International Workshop on
Conference_Location :
St. Thomas, VI
Print_ISBN :
978-1-4244-1713-1
Electronic_ISBN :
978-1-4244-1714-8
DOI :
10.1109/CAMSAP.2007.4498012