• DocumentCode
    3328802
  • Title

    Estimation of Two-dimensional Class A Noise Model Parameters By Markov Chain Monte Carlo

  • Author

    Jiang, Yu-Zhong ; Hu, Xiu-lin ; Li, Wen-Lu ; Zhang, Shu-Xia

  • fYear
    2007
  • fDate
    12-14 Dec. 2007
  • Firstpage
    249
  • Lastpage
    252
  • Abstract
    Antenna arrays are widely employed in communication systems, because the performance improvements over single antenna systems. The noise in multiple antennas may be statistically dependent from antenna to antenna and may be non-Gaussian. In this paper an efficient estimation of two-dimensional version Middleton´s Class A noise model parameters is derived based on Markov Chain Monte Carlo (MCMC). This estimator can estimate five-parameter and hidden states for two-dimensional Class A noise model simultaneously. Simulation of this estimator indicates that this considered estimator is fast converges and low complexity for small data samples.
  • Keywords
    Markov processes; Monte Carlo methods; antenna arrays; parameter estimation; Markov chain Monte Carlo; antenna arrays; class A noise model parameter estimation; multiple antennas; nonGaussian noise; single antenna system; two-dimensional version Middleton class; Antenna arrays; Background noise; Gaussian noise; Interference; Monte Carlo methods; Noise level; Parameter estimation; State estimation; Statistics; Working environment noise; Impulsive Noise; Middleton Class A Model; Parameter Estimation; non-Gaussian Noise;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Computational Advances in Multi-Sensor Adaptive Processing, 2007. CAMPSAP 2007. 2nd IEEE International Workshop on
  • Conference_Location
    St. Thomas, VI
  • Print_ISBN
    978-1-4244-1713-1
  • Electronic_ISBN
    978-1-4244-1714-8
  • Type

    conf

  • DOI
    10.1109/CAMSAP.2007.4498012
  • Filename
    4498012