Title :
Robot learning of everyday object manipulations via human demonstration
Author :
Dang, Hao ; Allen, Peter K.
Author_Institution :
Dept. of Comput. Sci., Columbia Univ., New York, NY, USA
Abstract :
We deal with the problem of teaching a robot to manipulate everyday objects through human demonstration. We first design a task descriptor which encapsulates important elements of a task. The design originates from observations that manipulations involved in many everyday object tasks can be considered as a series of sequential rotations and translations, which we call manipulation primitives. We then propose a method that enables a robot to decompose a demonstrated task into sequential manipulation primitives and construct a task descriptor. We also show how to transfer a task descriptor learned from one object to similar objects. In the end, we argue that this framework is highly generic. Particularly, it can be used to construct a robot task database that serves as a manipulation knowledge base for a robot to succeed in manipulating everyday objects.
Keywords :
manipulators; human demonstration; object manipulation; robot learning; sequential manipulation; task descriptor;
Conference_Titel :
Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on
Conference_Location :
Taipei
Print_ISBN :
978-1-4244-6674-0
DOI :
10.1109/IROS.2010.5651244