Title :
Learning the Change for Automatic Image Cropping
Author :
Jianzhou Yan ; Lin, Shunjiang ; Sing Bing Kang ; Xiaoou Tang
Author_Institution :
Chinese Univ. of Hong Kong, Hong Kong, China
Abstract :
Image cropping is a common operation used to improve the visual quality of photographs. In this paper, we present an automatic cropping technique that accounts for the two primary considerations of people when they crop: removal of distracting content, and enhancement of overall composition. Our approach utilizes a large training set consisting of photos before and after cropping by expert photographers to learn how to evaluate these two factors in a crop. In contrast to the many methods that exist for general assessment of image quality, ours specifically examines differences between the original and cropped photo in solving for the crop parameters. To this end, several novel image features are proposed to model the changes in image content and composition when a crop is applied. Our experiments demonstrate improvements of our method over recent cropping algorithms on a broad range of images.
Keywords :
image processing; automatic cropping technique; automatic image cropping; crop parameters; cropped photo; cropping algorithms; distracting content; expert photographers; image composition; image content; image features; image quality; original photo; overall composition; photographs; visual quality; Agriculture; Face; Feature extraction; Image color analysis; Shape; Training; Vectors; Image cropping;
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on
Conference_Location :
Portland, OR
DOI :
10.1109/CVPR.2013.130