• DocumentCode
    3334497
  • Title

    Bayesian regularization of diffusion tensor images using hierarchical MCMC and loopy belief propagation

  • Author

    Wei, Siming ; Hua, Jing ; Bu, Jiajun ; Chen, Chun ; Yu, Yizhou

  • Author_Institution
    Coll. of Comput. Sci., Zhejiang Univ., Hangzhou, China
  • fYear
    2010
  • fDate
    26-29 Sept. 2010
  • Firstpage
    65
  • Lastpage
    68
  • Abstract
    Based on the theory of Markov Random Fields, a Bayesian regularization model for diffusion tensor images (DTI) is proposed in this paper. The low-degree parameterization of diffusion tensors in our model makes it less computationally intensive to obtain a maximum a posteriori (MAP) estimation. An approximate solution to the problem is achieved efficiently using hierarchical Markov Chain Monte Carlo (HMCMC), and a loopy belief propagation algorithm is applied to a coarse grid to obtain a good initial solution for hierarchical MCMC. Experiments on synthetic and real data demonstrate the effectiveness of our methods.
  • Keywords
    Bayes methods; Markov processes; Monte Carlo methods; belief networks; biodiffusion; biomedical MRI; maximum likelihood estimation; medical image processing; Bayesian regularization; HMCMC; MAP estimation; Markov fandom fields; diffusion tensor images; hierarchical Markov chain Monte Carlo; loopy belief propagation; maximum a posteriori estimation; Bayesian methods; Belief propagation; Diffusion tensor imaging; Estimation; Markov processes; Noise measurement; Tensile stress; Bayesian Models; Diffusion Tensor Images; Image Restoration; Markov Chain Monte Carlo;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Image Processing (ICIP), 2010 17th IEEE International Conference on
  • Conference_Location
    Hong Kong
  • ISSN
    1522-4880
  • Print_ISBN
    978-1-4244-7992-4
  • Electronic_ISBN
    1522-4880
  • Type

    conf

  • DOI
    10.1109/ICIP.2010.5651519
  • Filename
    5651519