Title :
A Smoothing Method for a Statistical String Similarity
Author :
Takasu, Atsuhiro ; Aihara, Kenro ; Yamada, Taizo
Author_Institution :
Nat. Inst. of Inf., Tokyo
Abstract :
We often need to measure similarity between objective information when integrating information. We propose an algorithm in this paper for the Bayesian estimation of the parameters of a statistical string similarity model. To do this we need a smoothing technique for the parameter estimation, because a string similarity model usually contains many parameters. We can make a parameter estimation for the statistical similarity model by introducing a Dirichlet prior. The experimental results show that the proposed method is effective enough for approximate matching.
Keywords :
Bayes methods; smoothing methods; statistical analysis; Bayesian estimation; Dirichlet prior; parameter estimation; smoothing method; statistical string similarity; Bayesian methods; Character recognition; Costs; Couplings; Hidden Markov models; Optical character recognition software; Parameter estimation; Probability; Smoothing methods; Training data;
Conference_Titel :
Information Reuse and Integration, 2007. IRI 2007. IEEE International Conference on
Conference_Location :
Las Vegas, IL
Print_ISBN :
1-4244-1500-4
Electronic_ISBN :
1-4244-1500-4
DOI :
10.1109/IRI.2007.4296690