DocumentCode :
3335442
Title :
Unconstrained minimum mean-square error parameter estimation with Hopfield networks
Author :
Altes, Richard A.
Author_Institution :
Chirp Corp., La Jolla, CA, USA
fYear :
1988
fDate :
24-27 July 1988
Firstpage :
541
Abstract :
D.W. Tank and J.J. Hopfield (1986) have shown that an interconnected set of neuron-like elements can perform constrained minimum mean-square error (MMSE) estimation, such that estimated parameters are either zero or one. It is shown that a Hopfield network can also be applied to unconstrained MMSE estimation, such that estimated parameters can be any real number. Since unconstrained MMSE estimation is one of the most important operations in signal processing, the discovery that Hopfield networks can be used for such problems substantially increases their applicability.<>
Keywords :
neural nets; parameter estimation; signal processing; Hopfield networks; interconnected set; neural networks; signal processing; unconstrained minimum mean-square error parameter estimation; Neural networks; Parameter estimation; Signal processing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 1988., IEEE International Conference on
Conference_Location :
San Diego, CA, USA
Type :
conf
DOI :
10.1109/ICNN.1988.23970
Filename :
23970
Link To Document :
بازگشت