DocumentCode :
3340107
Title :
Research of TCM syndromes diagnostic models for chronic gastritis based on multielement mathematical statistical methods
Author :
Wang, Yi-Qin ; Liu, Guo-Ping ; Xia, Chun-ming ; Xu, Zhao-Xia ; Fu, Jing-Jing ; Wang, Xue-Hua ; Deng, Feng ; Ye, Jin ; He, Jian-Cheng ; Li, Fu-Feng ; Yan, Hai-Xia
Author_Institution :
Shanghai Univ. of Traditional Chinese Med., Shanghai, China
Volume :
1
fYear :
2009
fDate :
14-16 Aug. 2009
Firstpage :
31
Lastpage :
37
Abstract :
In this study, we assessed the large sample population of patients with chronic gastritis based on three methods with supervised learning function, i.e., the regression analysis, BP neural network and support vector machine. On basis of the results, we constructed the diagnostic models to predict the types of traditional Chinese medicine (TCM) syndromes of chronic gastritis, and compared the correct rate and applicability of each method. The study showed the correct rate of prediction was as follows: support vector machine >BP neural network > regression analysis, after construction of diagnostic models with three algorithms. We believe, our results could be of great value in exploring the methodology of objectification and standardization of TCM Syndromes.
Keywords :
backpropagation; medical diagnostic computing; neural nets; regression analysis; support vector machines; BP neural network; TCM syndromes diagnostic model; chronic gastritis; multielement mathematical statistical method; regression analysis; supervised learning function; support vector machine; traditional Chinese medicine; Hospitals; Mathematical model; Medical diagnostic imaging; Neural networks; Predictive models; Regression analysis; Standardization; Statistical analysis; Supervised learning; Support vector machines;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
IT in Medicine & Education, 2009. ITIME '09. IEEE International Symposium on
Conference_Location :
Jinan
Print_ISBN :
978-1-4244-3928-7
Electronic_ISBN :
978-1-4244-3930-0
Type :
conf
DOI :
10.1109/ITIME.2009.5236466
Filename :
5236466
Link To Document :
بازگشت